INTRODUCTION

During the normal development, both dorsal aortas give rise to many omphalomesenteric (ventral segmental) arteries. Fusion of the dorsal aorta develops in about four weeks, and regression of multiple omphalomesenteric arteries progresses shortly thereafter. The dorsal aorta gives off segmental branches to the digestive tube (ventral splanchnic arteries), to the mesonephric ridge (lateral splanchnic arteries) and intersegmental branches to the body wall (somatic arteries) (1). Anatomic variations involving the visceral arteries are common (2,3). Also variation of the branches of the celiac trunk were reported by many authors (4,5).

While vascular anomalies are usually asymptomatic, they may become important in patients undergoing diagnostic angiography for gastrointestinal bleeding, celiac axis compression syndrome, or prior to an operative procedure or transcatheter therapy.

CASE REPORT

During the dissection of the posterior abdominal wall of a 25-year-old woman cadaver, it was encountered that the celiac trunk branched unusual manner. The celiac trunk arose from the ventral surface of the abdominal aorta at the level of the intervertebral disc between T12 and L1 vertebrae. The muscular fibers of the left and right crus of the diaphragm were closely related to the celiac trunk and to its branches. The celiac trunk was formed by the common hepatic artery, splenic artery, left middle suprarenal artery and a common trunk. The case was evaluated in the point of surgery.

Key Words: Inferior Phrenic Artery, Middle Suprarenal Artery, Celiac Trunk.

(*) Department of Anatomy, Gulhane Military Medical Academy, Ankara, Turkey
(**) Department of Anatomy, Faculty of Medicine, Marmara University, Istanbul, Turkey
Reprint Request : Dr. Bülent YALÇIN, GATA Anatomi Ana Bilim Dalı 06018 Etilik/Ankara
e-mail: byalcin@gata.edu.tr
Kabul Tarihi : 24.02.2004
inferior phrenic artery (3.1 mm). The left gastric artery ascended to the cardial part of the stomach and supplied the left side of the lesser curvature and the abdominal part of the esophagus. To show the celiac trunk and its branches we moved the stomach upward, and completely removed the pancreas. The left inferior phrenic artery ran obliquely to the left crus of the diaphragm. Over the left suprarenal gland it gave off 2 branches to the superior portion. Left middle suprarenal artery was the first and the smallest (2.4 mm in diameter) branch of the celiac trunk, and arose from the lateral surface of the aorta. The spleen was moved downward to show course of it. After originating left middle suprarenal artery ascended laterally and obliquely over the vertebral column. At the body of the T12 vertebra, left middle suprarenal artery entered into the middle portion of the left suprarenal gland. Its length and diameter were measured as 35 and 2 mm, respectively. The inferior portion of the suprarenal gland was supplied by the inferior suprarenal artery originating from the proximal part of the left renal artery.

Figure 1. The photograph of the celiac trunk and its branches (left renal vein and pancreas removed). CT: celiac trunk; SA: splenic artery; LGA: left gastric artery; CHA: common hepatic artery; IPA: left inferior phrenic artery; SMA: superior mesenteric artery; RC: right crus of the diaphragm; SG: left suprarenal gland; *: common trunk; **: left middle suprarenal artery; white arrowhead: left superior suprarenal arteries.

DISCUSSION

The variations of the celiac trunk were different. Some of them were related to its branches such as in our case. Other variations were related to its diameter, length or location. Yüksel et al. (6) stated multiple variations that included an extremely long celiac trunk, an inferior phrenic trunk (as one of the branches of the celiac trunk) and an aberrant right hepatic artery derived from the superior mesenteric artery. Vandamme and Bonte (4) observed the absence of the celiac trunk in 1.25% of their series. Piano et al. (7) stated that the right and left inferior phrenic arteries occasionally originated as a common trunk from the aorta, ccelico-mesenteric system or adreno-renal system. He observed that inferior phrenic arteries were usually paired (left and right) and their origin were summarised as follows; a) the aorta itself (61.6%), b) ventro-visceral arteries (celiaco-mesenteric system of the aorta) including the celiac trunk (28.2%), and left gastric artery (2.9%), c) the latero-visceral arteries (adreno-renal system of the aorta) including the middle adrenal artery (2.9%) and renal artery (4.3%). Cavdar et al. (8) reported a case, in
which the left inferior phrenic artery and the left gastric artery arose from the long celiac trunk (4.3 cm) via a common trunk. In our case, the common trunk was observed, too, but there was also the left middle suprarenal artery, arising from the celiac trunk.

Manso et al. (9) reported that the variation of the middle suprarenal artery was not rare although it generally originated from the abdominal aorta. They also said that this artery may originate from right or left inferior phrenic arteries, inferior or superior suprarenal arteries, superior mesenteric artery, right renal artery, celiac trunk and left renal artery. According to their observations, the number of the left or right middle suprarenal artery was generally one, and rarely originated from the celiac trunk (3.3 %). Okada et al. (10) described a case of absence of the celiac trunk in which the left middle suprarenal artery gave off the inferior phrenic artery, and the left middle suprarenal artery had a common arterial stem with the inferior phrenic and the aberrant renal arteries.

In our case, the variation of the branches of the celiac trunk may be extreme because the embryological development of the paired inferior phrenic artery and middle suprarenal artery (lateral splanchnic artery) had come together with the unpaired visceral segmental artery.

In our opinion; arterial variations should not be ignored during the abdominal operative procedures. Because many of the complications could be avoided with the accurate knowledge of the anatomic variations; we believe that, this case will take its place in the literature and play a significant role in the surgical intervention in the abdominal region and also in angiographies.

REFERENCES