Abstract
This study reports a case of post partem uterine prolapse in a goat. The animal was brought to the hospital with a complaint of uterine prolapse. The everted organ was carefully handled and the debris was removed by washing with dilute potassium per magnet solution. Epidural anaesthesia was achieved by using lignocaine solution. The prolapsed uterus was replaced ana broad spectrum antibiotics were administered intramuscularly. The animal was hospitalized for close monitoring. There was no recurrence and animal was discharged after two days.

Key words: Epidural anaesthesia, lignocaine, uterine prolapse

Introduction
Post partem uterine prolapse is most common in cattle and sheep but less common in goat. Prolapse of uterus occurs immediately or after a few hours of parturition when the cervix is open and the uterus lacks tone (Hannie, 2006). The prolapse is visible as a large mass protruding from the vulva. It normally occurs during the third stage of labour when the foetus has been expelled and foetal cotyledons separated from maternal caruncles (Noakes et al., 2001). The cause of uterine prolapse is unknown but many factors are associated (Jackson, 2004). Conditions like increased straining during and after parturition caused by pain, the weight of retained fetal membranes and increased abdominal pressure due to tympany and high estrogen content in feed can act as exciting causes for uterine prolapse. Animals with uterine prolapse treated promptly recover without complication while delay in treatment could result in death of animal in a matter of hour or so from internal haemorrhage caused by the weight of the organ (Noakes et al., 2001). Success rate of treatment depends upon the type of case, duration of suffering and the degree of damage.

Case History
A three years old, non-descript doe weighing 35 kg was brought to the Veterinary Hospital Petlawad, Jhabua for treatment of prolapsed uterus which the owner noticed after three hours of kidding. A thorough clinical examination was carried out and the parameters were: Temperature 102.5°F, Pulse rate 80 beats per minute and respiratory rate 35 cycles per minute. The mucous membrane was slight pinkish. There
was complete eversion of uterus with hanging placenta (Fig.1). The prolapsed uterus was highly inflammed and non-necrotic. Epidural anesthesia was achieved by infiltration of 2.5 ml 2% Lignocaine hydrochloride solution into first intercoccygeal vertebral space to prevent straining during replacement. After five minutes of anaesthesia sensitivity around the perineal region was checked by pricking with the needle. The placenta was manually separated from the maternal caruncles. The debris and faecal material were removed and the prolapsed uterus was gently irrigated with 1% potassium per magnet solution. The animal was placed on sternal recumbency and the hind limbs were extended posteriorly. Then the prolapsed uterus was gently replaced using both hands with slight force. A small pessary made up of blunt round object was inserted into the vagina after replacement to prevent reoccurrence. A rope was fastened through this object and around the chest and neck of animal. Ceftriaxone 250 mg, Meloxicam 3ml were administered intramuscularly for five days. Dexamethasone 2ml was administered intramuscularly once and 35 ml of Intravenous Calcium Boro Gluconate . The pessary was removed after 24 hours. Animal was discharged after two days.

Fig.1. Uterine Prolapse

Fig.2. After replacement
Discussion

Uterine prolapse occurs most often immediately after parturition and occasionally up to several hours afterwards. In rare cases it may occur 48 to 72 hours after parturition (Roberts, 2004). The main aim of treatment is proper replacement of the organ. A complete clinical examination of animals with uterine prolapse must be undertaken as signs of toxaemia like anorexia, increased respiratory rate; raised pulse may co-exist with metritis (Wachida and Kisani, 2011). Faecal contamination of prolapsed uterus may increase the risk of toxaemia. Vigorous attempts to remove superficial contamination should be avoided as they may prove counterproductive by increasing toxin uptake (Scott and Gessert, 1998). Caudal epidural anaesthesia is essential before replacement of uterine prolapsed (Wachida and Kisani, 2011). The uterine prolapse can be replaced with the animal in standing or recumbent position (Hannie, 2006). It has also been reported that most of the animals with uterine prolapse are hypocalcaemic (Fubini and Ducharme, 2006). Calcium Boro Gluconate should be administered. Animals with uterine prolapse that were properly managed can conceive again without any complication.

References